求用基霍夫定律计算出三个点的电流和五个电阻的电压 基尓霍夫电流定律

6226℃ BLANCHE

求用基霍夫定律计算出三个点的电流和五个电阻的电压基尓霍夫电流定律

用基尔霍夫定律求电流

你在学电路分析吧

电流就是-20A呀(负号表示I与电流源产生电流方向相反)

整个电路的电流是由电流源决定的,他是一个从实际电路中抽象出来的一个模型,无内阻,其两端电压由外电路决定,向外输出电流与外电路无关

这道题目应该是求电流源两端的电压吧?

基尔霍夫定律节点电流求解

三条或多於3条支路汇合的点为节点,图上有4个节点,节点电压法是选其一为参考点,其他3节点列电压方程。如图,选0为参考点,

a: (1/R1 + 1/R2 + 1/R4)Va - Vb/R4 - Vc/R1=Us2/R2 - Us1/R1.......(1)

b: (1/R4 + 1/R5 + 1/R6)Vb - Va/R4 - Vc/R5=0...............(2)

c: ((1/R1 + 1/R3 + 1/R5)Vc - Va/R1 - Vb/R5=Us3/R3 + Us1/R1...........(3)

基尔霍夫电流定律的理论及计算

基尔霍夫电流定律表明: 所有进入某节点的电流的总和等于所有离开这节点的电流的总和。 或者,更详细描述为: 假设进入某节点的电流为正值,离开这节点的电流为负值,则所有涉及这节点的电流的代数和等于零。 以方程表达,对于电路的任意节点满足:

其中,ik 是第 k 个进入或离开这节点的电流,是流过与这节点相连接的第 k 个支路的电流,可以是实数或复数。[4] 由于累积的电荷(单位为库仑)是电流(单位为安培)与时间(单位为秒)的乘积,从电荷守恒定律可以推导出这条定律。其实质是稳恒电流的连续性方程,即根据电荷守恒定律,流向节点的电流之和等于流出节点的电流之和。

思考电路的某节点,跟这节点相连接有 n 个支路。假设进入这节点的电流为正值,离开这节点的电流为负值,则经过这节点的总电流 i 等于流过支路 k 的电流ik的代数和:

将这方程积分于时间,可以得到累积于这节点的电荷的方程:

其中,是累积于这节点的总电荷,是流过支路 k的电荷,t0 是检验时间,t 是积分时间变量。

假设 q>0 ,则正电荷会累积于节点;否则,负电荷会累积于节点。根据电荷守恒定律,q 是个常数,不能够随着时间演进而改变。由于这节点是个导体,不能储存任何电荷。所以,q=0 、i=0 ,基尔霍夫电流定律成立:

从上述推导可以看到,只有当电荷量为常数时,基尔霍夫电流定律才会成立。通常,这不是个问题,因为静电力相斥作用,会阻止任何正电荷或负电荷随时间演进而累积于节点,大多时候,节点的净电荷是零。

不过,电容器的两块导板可能会允许正电荷或负电荷的累积。这是因为电容器的两块导板之间的空隙,会阻止分别累积于两块导板的异性电荷相遇,从而互相抵消。对于这状况,流向其中任何一块导板的电流总和等于电荷累积的速率,而不是零。但是,若将位移电流纳入考虑,则基尔霍夫电流定律依然有效。只有当应用基尔霍夫电流定律于电容器内部的导板时,才需要这样思考。若应用于电路分析(circuit analysis)时,电容器可以视为一个整体元件,净电荷是零,所以原先的电流定律仍适用。

由更技术性的层面来说,取散度于麦克斯韦修正的安培定律,然后与高斯定律相结合,即可得到基尔霍夫电流定律:

其中,J 是电流密度, 是电常数,E 是电场,ρ 是电荷密度。

这是电荷守恒的微分方程。以积分的形式表述,从封闭表面流出的电流等于在这封闭表面内部的电荷 Q 的流失率:

基尔霍夫电流定律等价于电流的散度是零的论述。对于不含时电荷密度,该定律成立。对于含时电荷密度,则必需将位移电流纳入考虑。

求解,简述基尔霍夫电流定律,基尔霍夫电压定律

1、基尔霍夫电流定律也称为节点电流定律内容是电路中任一个节点上,在任一时刻,流入节点的电流之和等于流出节点的电流之和。(又简写为KCL)

2、基尔霍夫电压定律内容是,在任何一个闭合回路中,各元件上的电压降的代数和等于电动势的代数和,即从一点出发绕回路一周回到该点时,各段电压的代数和恒等于零,即∑U=0。

扩展资料:

基尔霍夫定律建立在电荷守恒定律、欧姆定律及电压环路定理的基础之上,在稳恒电流条件下严格成立。当基尔霍夫第一(基尔霍夫电流定律)、第二(基尔霍夫电压定律)方程组联合使用时,可正确迅速地计算出电路中各支路的电流值。

由于似稳电流(低频交流电) 具有的电磁波长远大于电路的尺度,所以它在电路中每一瞬间的电流与电压均能在足够好的程度上满足基尔霍夫定律。因此,基尔霍夫定律的应用范围亦可扩展到交流电路之中。

它除了可以用于直流电路的分析,和用于似稳电路的分析,还可以用于含有电子元件的非线性电路的分析。运用基尔霍夫定律进行电路分析时,仅与电路的连接方式有关,而与构成该电路的元器件具有什么样的性质无关。

参考资料:百度百科 基尔霍夫电流定律

参考资料:百度百科 基尔霍夫电压定律

参考资料:百度百科 基尔霍夫定律