功能型玻璃纤维的需求有哪些?(玻璃纤维的具体分类及用途)

8519℃ JODY

功能型玻璃纤维的需求有哪些?(玻璃纤维的具体分类及用途)

玻璃纤维的具体分类及用途

玻璃纤维一般根据玻璃原料成分、单丝直径、纤维特性、纤维外观等进行分类。玻璃纤维有合股无捻粗纱、直接无捻粗纱、短切原丝、无捻粗纱布、玻璃纤维毡、摩擦材料、连续玻璃纤维等。

一、玻璃原料成分分类:一般以不同的碱金属氧化物含量来区分

(1)无碱纤维(通称E玻璃): R2O含量小于0.8%,是一种铝硼硅酸盐成分。它的化学稳定性、电绝缘性能、强度都很好。主要用作电绝缘材料、玻璃钢的增强材料和轮胎帘子线。

(2)中碱纤维: R2O的含量为11.9%-16.4%,是一种钠钙硅酸盐成分,因其含碱量高,不能作电绝缘材料,但其化学稳定性和强度尚好。一般作乳胶布、方格布基材、酸性过滤布、窗纱基材等。

(2)高碱纤维: R2O含量等于或大于15%的玻璃成分。如采用碎的平板玻璃、碎瓶子玻璃等作原料拉制而成的玻璃纤维。可作蓄电瓶隔离片、管道包扎布和毡片等防水、防潮材料。

二、以单丝直径分类:玻璃纤维单丝呈圆柱形,粗细可以用直径来表示

(1)粗纤维:其单丝直径一般为30um

(2)初级纤维:其单丝直径大于20um;

(3)中级纤维:单丝直径10-20um

(4)高级纤维:(亦称纺织纤维)其单丝直径3-10um。

三、以纤维特性分类:纤维高强玻璃纤维;高模量玻璃纤维;耐高温玻璃纤维;耐碱玻璃纤维;耐酸玻璃纤维;普通玻璃纤维(指无碱及中碱玻璃纤维);光学纤维;低介电常数玻璃纤维;导电纤维等

拓展资料:

玻璃纤维(英文原名为:glass fiber或fiberglass )是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差。它是叶腊石、石英砂、石灰石、白云石、硼钙石、硼镁石七种矿石为原料经高温熔制、拉丝、络纱、织布等工艺制造成的,其单丝的直径为几个微米到二十几个微米,相当于一根头发丝的 1/20-1/5 ,每束纤维原丝都由数百根甚至上千根单丝组成。

参考资料来源:搜狗百科https://baike.baidu/item/%

玻璃纤维有什么用途

玻璃钢(也称玻璃纤维增强塑料,国际公认的缩写符号为GFRP或FRP),是一种品种繁多,性能各别,用途广泛的复合材料。它是由合成树脂和玻璃纤维经复合工艺,制作而成的一种功能型的新型材料。

玻璃钢材料具有重量轻,比强度高,耐腐蚀,电绝缘性能好,传热慢,热绝缘性好,耐瞬时超高温性能好,以及容易着色,能透过电磁波等特性。与常用的金属材料相比,它还具有如下的特点∶

由于玻璃钢产品,可以根据不同的使用环境及特殊的性能要求,自行设计复合制作而成,因此只要选择适宜的原材料品种,基本上可以满足各种不同用途对于产品使用时的性能要求。因此,玻璃钢材料是一种具有可设计性的材料品种。

玻璃钢产品,制作成型时的一次性,更是区别于金属材料的另一个显著的特点。只要根据产品的设计,选择合适的原材料铺设方法和排列程序,就可以将玻璃钢材料和结构一次性地完成,避免了金属材料通常所需要的二次加工,从而可以大大降低产品的物质消耗,减少了人力和物力的浪费。

玻璃钢材料,还是一种节能型材料。若采用手工糊制的方法,其成型时的温度一般在室温下,或者在100℃以下进行,因此它的成型制作能耗很低。即使对于那些采用机械的成型工艺方法,例如模压、缠绕、注射、RTM、喷射、挤拉等成型方法,由于其成型温度远低于金属材料,及其他的非金属材料,因此其成型能耗可以大幅度降低。

综上所述,与传统的金属材料及非金属材料相比,玻璃钢材料及其制品,具有强度高,性能好,节约能源,产品设计自由度大,以及产品使用适应性广等特点。因此,在一定意义上说,玻璃钢材料是一种应用范围极广,开发前景极大的材料品种之一。

目前我国的玻璃钢工业,已经具备了一定的规模,在产品的品种数量及产量方面,以及在技术水平方面,均已经取得了巨大的进展,在国民经济建设中发挥了重要的作用。

玻璃钢的成型工艺方法,有很多种方法。其中有最简单易学的手工糊制方法,也有比较容易建立的模压工艺成型方法;也有必须经过专门设计、专业制造的纤维缠绕成型方法;更有一些综合注射、真空、预成型增强材料或预设垫料的几种模塑方法;以及为了达到制品高性能指标而设计制造的,由计算机进行程序控制的先进的自动化成型方法。

由此可见,玻璃钢制品的制作成型方法有很多种,它们的技术水平要求相差很大,其对原材料、模具、设备投资等的要求,也各不相同,当然它们所生产产品的批量和质量,也不会相同。

目前,国内外常用的玻璃钢制作成型方法,有手糊成型工艺、喷射成型工艺、模压成型工艺、模压料成型工艺、纤维缠绕成型工艺、卷管成型工艺、袋压成型工艺、树脂浇铸及注射成型工艺、RTM成型工艺、拉挤成型工艺、板材及管道连续成型工艺、增强反应注射模塑成型工艺、弹性体贮脂模塑成型工艺,以及胶接和连接技术、夹层结构制作技术等。

现把几种常用的玻璃钢的成型方法的特点介绍如下∶

手糊制作方法的设备投资低,产品形状的限制因素少,适合小批量生产。它的生产条件是需要制作产品的模具,并掌握手糊工艺的技术要领。但是,这种制作方法所制成的产品,质量不够稳定,产品的质量档次不够高,较难满足某些产品的性能要求。

喷射成型方法,是一种借助于喷射机器的手工积层的方法。该方法具有效率高、成本低的特点,有逐步取代传统的手糊工艺的趋势。其产品的整体性强,没有搭接缝,且制品的几何尺寸基本上没有受到限制,成型工艺不复杂,材料配方能保持一定的准确性。其不足之处,在于制品的质量在很大程度上,取决于操作工人的生产技能。另外,喷射所造成的污染,一般均大于其他的工艺方法。

纤维缠绕工艺方法,是将浸渍过树脂的连续纤维,按一定的规律缠绕到芯模上,层叠至所需的厚度,固化后脱模,即成制品。该方法的特点,是可按产品承受应力情况来设计纤维的缠绕规律,使之充分发挥纤维的抗拉强度,并且容易实现机械化和自动化,产品质量较为稳定,若配用不同的树脂基体和纤维的有机复合,则可获得最佳的技术经济效果。纤维缠绕工艺,可成功地应用于制作玻璃钢管道、贮罐、气瓶、风机叶片、撑高跳竿、电线竿、羽毛球拍等的制品。

模压成型工艺和模塑料成型工艺,其压制工艺和设备条件基本相同,前者采用浸胶布作为模压料,而后者采用片状、团状、散状的模压料,首先将一定量的模压料置于金属对模中,而后在一定温度和压力下成型制得所需的玻璃钢制品。这种生产成型方法,所制得的产品尺寸精确,表面光洁,可一次成型,生产效率较高,且产品质量较为稳定,适合于大批量制作各种小型玻璃钢制品。其不足之处是模具的设计和制造较为复杂,生产初期的投资较高,且制件受设备的限制较为突出。

拉挤成型方法,是在牵引装置牵引下,使浸渍树脂的纤维增强材料,先在模具中预成型,并经加热使之固化成型,制成玻璃钢型材,最后切割成所需长度的玻璃钢制品。该种成型工艺方法,具有以下明显的特点∶首先它可以制作几何形状复杂的制品,尤其对于特小型或特大型制品,该工艺方法具有其他方法所无法比拟的优越性;其次只要经过合理的产品设计、工艺设计,某些高性能复合材料的制作,在拉挤工艺中就可得以实现;另外,拉挤工艺方法,尤其适合于开发制作各种热塑性玻璃钢制品;加之由于拉挤速度日趋加快,因此拉挤工艺的生产效率很高,作为连续生产的先进方法之一,为实现玻璃钢的工业化生产开辟了一条有效的途径。但是也必须指出,建立拉挤生产工艺方法的要求比较高,例如其设备投资较大,模具设计较为复杂,工艺条件的控制及对原材料的性能要求较为严格,这些都是建立拉挤成型工艺的困难之处。

在上述玻璃钢的制作成型技术方法中,每一种技术均有其自身的特点。生产企业在选择确定采用何种工艺方法时,需根据企业的基本情况及生产产品的情况,如生产产品的批量及其质量要求,以及企业的技术基础和生产资金情况等因素进行综合考虑。

假如,企业拟准备签订一批玻璃钢桌椅的业务,由于采用手糊、模压、RTM工艺均可以制作玻璃钢桌椅,这时需根据企业和产品的实际情况来加以确定,以便获得最适宜的生产投入、产品质量及经济效益之间的关系。

汽车电瓶EFB与AGM有什么区别?

理士AGM蓄电池是指隔板采用的是超细玻璃棉材料的蓄电池。目前德系,美系主推AGM技术。与普通蓄电池相比,价格贵三倍多,但具有以下优点:

1、拥有铸板、冲网、拉网三项技术

2、卓越的启动能力,既使在欠充电条件下使用,仍能轻松起动车辆

3、更高的充电接受能力

4、更好的低温启动性能

5、更长的使用寿命,是普通电池的3-4倍

6、更省油和环保,节油5-10%,减少10-20%的二氧化碳排放量

理士EFB电池是富液式增强型启停电池,是在原来普通铅酸电池基础上研发而来,能耐高温,可安装在发动机舱内,能够完全达到启停系统的要求,比普通电池寿命性能提升三倍,性价比较高,价格比普通电池贵两倍多。目前日系厂家主推EFB技术。

扩展资料:

要用AGM/EFB启停蓄电池的原因

因为发动机启动时,由于需要点火,并且需要给启动电动机供电,车载蓄电池必须可以进行大电流放电性能;由于启停系统频繁重启发动机,蓄电池支持频繁地大电流放电;混合动力系统为车轮提供动力时,蓄电池需要提供能量支持;能满足车内音响、照明等电气设备的需要;车载充电机给蓄电池充电时,蓄电池要具备很强的充电接受性能;AGM/EFB蓄电池可以满足启停功能需求。

参考资料:搜狗百科_AGM型电池

影响玻璃纤维强度的因素有哪些?如何影响

1、 纤维直径和长度对拉伸强度的影响

一般情况,玻璃纤维的直径愈细,抗拉强度越高,但在不同的拉丝温度下拉制的同一直径的纤维强度,也可能有区别。玻璃纤维的拉伸强度和长度有关,随着纤维长度的增加,拉伸强度显著下降直径和长度对玻璃纤维拉伸强度的影响,可以用微裂纹假说来解释。因为随着纤维直径和长度的减小,纤维中微裂纹会相应减少,从而提高了纤维强度。

2、 化学组成对强度的影响

一般是含碱量越高、强度越低。无碱纤维比有碱纤维的拉伸强度高20%研究证明,高强和无碱纤维,由于成型温度高,硬化速度快,结构链能大等原因,因此具有很高的抗拉强度。含K2O和PbO 成分多的玻璃纤维强度较低。

3、 玻璃液质量对玻璃纤维强度的影响

A)结晶杂质的影响:当玻璃成分波动或漏板温度波动或降低时,可能导致纤维中结晶的出现。实践证明,有结晶的纤维比无结晶的纤维强度要低。

B)玻璃液中的小气泡也会降低纤维的强度。曾试验用含小气泡的玻璃液拉直径为5.7um,的玻璃纤维其强度比用纯净玻璃液拉制的纤维强度降低20%。

实践证明,用漏板拉制的玻璃纤维强度高于用玻璃棒法拉制的纤维。在玻璃棒法中,用煤气加热生产的纤维又比用电热丝加热生产的纤维强度为高。如用漏板法拉制10um,玻璃纤维的强度为1700MPa,而用棒法拉制相同直径的玻璃纤维强度仅为1100MPa。这是因为玻璃棒只加热到软化,粘度仍然很大,拉丝时纤维受到很大的应力;此外玻璃棒法是在较低温度下拉丝成型,其冷却速度要比漏板法为低。用各种不同成型方法生产的玻璃纤维的强度各不相同。用漏板法拉制的纤维强度最高,气流吹拉长棉次之,玻璃棒法再次之。然后是蒸汽立吹短棉,强度最低是蒸汽喷吹矿棉。在采用漏板拉丝的方法中,采用较高的成型温度,较小的漏孔直径,可以提高纤维强度。

5、 表面处理对强度的影响

在连续拉丝时,必须在单根纤维或纤维束上敷以浸润剂,它在纤维表面上形成一层保护膜,防止在纺织加工过程中,纤维间发生相互摩擦,而损伤纤维降低强度。玻璃布经热处理除去浸润剂后,强度下降很多,但在用中间粘结剂处理后,强度一般都可回升,这是因为中间粘结剂涂层一方面对纤维起到保护作用,另一方面对纤维表面缺陷有所弥补。

6、 存放时间对强度的影响

玻璃纤维存放一段时间后其强度会降低,这种现象称为纤维的老化。主要是空气中的水分对纤维侵蚀的结果。此,化学稳定性高的纤维强度降低小,如同样存放233年的有碱纤维强度降低33%,而无碱纤维降低很少。

7、施加负荷时间对强度的影响

玻璃纤维强度随着施加负荷时间的增长而降低。当环境温度较高时,尤其明显。可能是吸附在微裂纹中的水分,在外力作用下,使微裂纹扩展速度加快的缘故。