在进行提取时什么会加速主要成分的收集 加速溶剂萃取的原理

9004℃ BILLY

在进行提取时什么会加速主要成分的收集加速溶剂萃取的原理

简答化学物证常用的提取方法

化学物证常用的提取方法:

1.硝酸银溶液显现法

手印,特别是指印,它是以氯化钠的沉淀物形式存在的。使用硝酸银溶液显现手印,该溶液中的硝酸银与氯化钠之间发生化学反应,产生两种新的化学物质:硝酸钠和氯化银,而氯化银则具有很强的感光性。通过紫外线或日光照射,氯化银还原成金属银,指印即显现出来。用该法显现的手印呈黑色。

常用的硝酸银溶液配方如下:

硝酸银水溶液:硝酸银1-5克蒸馏水100毫升。

硝酸银酒精溶液:硝酸银1-3克无水酒精100毫升。

使用硝酸银溶液,显现现场潜在手印,方法有两种:

(1)用毛笔或棉球,将硝酸银溶液涂在承受体表面或将纸张之类的被显物浸入溶液中,待其干后,置于日光或紫外线下,潜在手印即显现出来。为防止曝光过度,使整个承受体表面变黑,应马上使用照相等方法,将其固定或转入黑暗之中加以保存。

(2)使用照相用显影剂。该法是先用硝酸银溶液处理被显物表面,然后用浓度为50%的照相用显影剂进行显影,而后用常规的照相定影剂定影,最后用清水冲洗。用该法显现出的手印,可经久不变且承受客体不会被损坏。

硝酸银溶液显现法,主要用于显现浅色纸张和本色竹木制品上的陈旧无色汗垢手印。使用该法时,最好戴防护手套。另外,用无水乙醇代替蒸馏水配制硝酸银溶液,效果会更好。加用氨基比林则无需曝光亦可快速显现手印。

2.8-羟基喹啉法

8-羟基喹啉又称喹啉醇,是一种显白色或淡黄色的结晶粉末,沸点低。8-羟基喹啉加温升华后,可与汗液手印中的钠、钾、钙等三十多种金属阳离子结合,生成各种荧光物质,用波长为2537埃的短波紫外线照射,即可发出浅蓝色荧光手印。

8-羟基喹啉法的具体操作方法是:将一定量的8-羟基喹啉粉末放于烧杯内,加温使其升华,将疑有手印的被显物置于烧杯上方约5毫米处,待升华气体与手印中的金属阳离子结合后,再拿到紫外线下进行照射,即可显现出浅蓝色手印。

8-羟基喹啉法适用于显现无荧光的聚苯乙烯塑料、白灰墙和纸张等承受体上的汗垢手印,尤其对显现易被各种溶剂溶解的聚苯乙烯泡沫塑料和不能使用粉末的油污工具等承受体上的手印,彩色书报、画刊上的手印。8-羟基喹啉法操作简便,手印显现清晰,在现场可大面积显现,而且经此法处理后,不妨碍再用其他方法显现。

3.茚三酮法

茚三酮又称为宁西特林,呈白色粉末状,可以与汗液中微量有机物氨基酸起化学反应,产生一种蓝紫色化合物,以显现无色手印。

用茚三酮显现手印,其具体操作方法是,先把茚三酮配制成2-5%的丙酮溶液,用毛笔或棉球涂在承受体表面,在室温下经四至六小时即可显现出清晰的手印。温度对显现时间有决定性影响,如果用100瓦灯泡烘烤或置于80度至100度恒温箱中,约二十至三十分钟即可显现手印;如果用电熨斗在正面(可垫一两层纸)或背面加热,甚至一两秒钟即可显现。但熨烫时,必须控制好温度,以免把承受体烫焦。

茚三酮法适于显现牛皮纸、本色竹木器具上的陈旧无色手印。由于溶液中有丙酮成分,故不得在能被丙酮溶解的物质的表面上使用。如油漆、塑料等。

4."502"胶显现法

"502"胶的主要成分是a-氰基丙烯酸乙酯,当用"502"胶显现潜在手印时,胶中挥发出来的a-氰基丙烯酸乙脂气体遇到了手印中的水和氨基酸,形成高分子固体聚合物,潜在手印就被显现出来。

"502"胶显现法在实地显现现场手印时,具体操作法如下:

用玻璃罩或塑料袋,将疑有手印的被显物或其部分表面,封闭在一个小空间内,然后滴人少量"502"胶,使其自然挥发、熏染,数小时后即呈白色或灰白色并显出手印。为加速"502"胶的挥发速度和显现手印的速度,可使用20瓦电烙铁触及滴有"502"胶的铝片,数秒钟内,"502"胶即呈白烟迅速挥发,十分钟内即可完成全部操作显现。另外一种加速方法是,将"502"胶滴在用氢氧化钾溶液处理过的脱脂棉上,同样能加速"502"胶的挥发速度。

"502"胶显现法,主要适用于显现塑料、金属、玻璃、瓷器现场勘查等承受体表面的潜在手印。

除以上常用方法外,为了更有效地显现手印,还可以采用其他化学药品。如采用醋酸铀铣锌溶液,可显现棉、麻、丝和人造纤维纺织品上的汗垢手印;对人体或尸体上的无色汗垢手印,可采用碘-银板转印法进行显现。根据最新科技手段的发展,利用图像处理技术显现现场手印将会成为一种新的、行之有效的方法。

DNA提取过程中的关键步骤及注意事项有哪些?

质粒抽提流程详解——沉淀菌体

检查细菌培养情况,将明显浑浊的菌液倒在已经编号的2ml的沉菌用离心管里,在约12000转/min的速度下离心沉淀1分钟,保证无悬浮物后取出;将离心管倒扣在卫生纸上,用力敲击,至液体培养基完全去除;如发现菌体沉淀的少,可多加2ml菌液重复沉菌一次。

在离心管中加入250µl 加过RNaseA1酶的Buffer S1,用振荡器震荡,直到沉淀完全充分悬浮。

1. Buffer S1是什么?主要组分是什么?

50 mM葡萄糖 / 25 mM Tris-Cl / 10 mM EDTA,pH 8.0

2. Buffer S1的功能是什么?

50 mM葡萄糖:加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。因此,如果Buffer S1中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。

EDTA :大家知道EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。在Buffer S1中加入高达 10 mM 的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。如果不加EDTA,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。 ——但是对于测序而言,我们是用水溶解质粒,所以EDTA是必须的。

3.如果抽提质粒恰好Buffer S1用完了,可不可以用水代替?

只要用等体积的水,或LB培养基来悬浮菌体就可以了。有一点不能忘的是,菌体一定要悬浮均匀,不能有结块。

质粒抽提流程详解——裂解

在离心管中加入250µl Buffer S2,上下缓慢颠倒7~8次至混旋液澄清(这步的操作时间不得超过4分钟);

☆ 注意:颠倒时不能太剧烈,否则会有核DNA污染;如果Buffer S2因温度过低有SDS沉淀析出,可将其放置55~60C水溶锅中适当加热至澄清后再用。

1.抽提质粒的原理是什么?

碱裂解法

2. Buffer S2是什么?主要组分是什么?

0.2 N NaOH / 1% SDS

SDS:十二烷基磺酸钠(Sodium dodecyl sulfate,SDS),是洗洁精的主要成分。常用于DNA提取过程中使蛋白质变性后与DNA分开。

3.Buffer S2的功能是什么?

NaOH:NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解。用了不新鲜的NaOH,即便是有SDS也无法有效溶解大肠杆菌,自然就难高效率抽提得到质粒。如果只用SDS当然也能抽提得到少量质粒,因为SDS也是碱性的,只是弱了点而已。

4.加入Buffer S2为何时间不能太久,动作要轻柔?

第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合,不然基因组DNA也会断裂。

质粒抽提流程详解——中和

加入400ul Buffer S3,剧烈颠倒5~10次,使之充分中和,同时将大块白色沉淀振成小块,便于离心。

在约13600转/min的速度下离心沉淀12分钟,如有因沉淀不完全引起的白色絮状物质,可重复振荡离心直至沉淀完全。

1. Buffer S3是什么?主要组分是什么?

3 M 醋酸钾 / 2 M 醋酸

2.加入Buffer S3后出现的白色沉淀是什么?&3.Buffer S3的功能是什么?

每个人都知道,溶液III加入后就会有大量的沉淀,但大部分人却不明白这沉淀的本质。

最容易产生的误解是,当SDS碰到酸性后发生的沉淀。如果你这样怀疑,往1%的SDS溶液中加如2M的醋酸溶液看看就知道不是这么回事了。大量沉淀的出现,显然与SDS的加入有关系。如果在溶液II中不加SDS会怎样呢,也会有少量的沉淀,但量上要少得多,显然是盐析和酸变性沉淀出来的蛋白质。既然SDS不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?在1%的SDS溶液中慢慢加入5 N的NaCl,你会发现SDS在高盐浓度下是会产生沉淀的。因此高浓度的盐导致了SDS的沉淀。但如果你加入的不是NaCl而是KCl,你会发现沉淀的量要多的多。这其实是十二烷基硫酸钠(sodium dodecylsulfate)遇到钾离子后变成了十二烷基硫酸钾(potassium dodecylsulfate, PDS),而PDS是水不溶的,因此发生了沉淀。如此看来,溶液III加入后的沉淀实际上是钾离子置换了SDS中的钠离子形成了不溶性的PDS,而高浓度的盐,使得沉淀更完全。大家知道SDS专门喜欢和蛋白质结合,平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质沉淀了,与此同时大肠杆菌的基因组DNA也一起被共沉淀了。这个过程不难想象,因为基因组DNA太长了,长长的DNA自然容易被PDS给共沉淀了,尽管SDS并不与DNA分子结合。

2 M的醋酸的作用是什么?

是为了中和NaOH,因为长时间的碱性条件会打断DNA,所以要中和。基因组DNA一旦发生断裂,只要是50-100 kb大小的片断,就没有办法再被PDS共沉淀了。所以碱处理的时间要短,而且不得激烈振荡,不然最后得到的质粒上总会有大量的基因组DNA混入,琼脂糖电泳可以观察到一条浓浓的总DNA条带。

质粒抽提流程详解——纯化

将上步离心上清液用移液器转移到吸附柱上,在约10500转/min的速度下离心1分钟。

注意:不要把沉淀物转移到吸附柱里,1个样品使用1个枪头。

为何离心上清液经离心后,质粒DNA就被吸附到膜上?

在高盐状态下,硅胶膜专一性地吸附DNA;而在低盐或水溶液状态下,DNA被洗脱下来。

质粒抽提流程详解——洗涤脱盐

取出DNA吸附柱,弃掉废液收集管中的液体,将柱子放回这个离心管中,加入500ul Wash Solution到柱子中,高速离心(10,000rpm)30秒。

重复上述步骤一次。

取出DNA吸附柱,弃掉废液收集管中的液体,将柱子放回这个离心管中,最大速度离心2分钟

使用Wash Solution要进行两次洗涤,目的是使残留的蛋白、盐离子等杂质更充分的被去除,保证硅胶膜上吸附的DNA尽量纯。

质粒抽提流程详解——产物回收

将DNA吸附柱移入新的1.5ml离心管中,在DNA吸附柱的膜中央加入30-40ul 预热无菌双蒸水,室温放置2分钟后12,000rpm离心1分钟,离心管底即为质粒DNA。

DNA提取过程中的关键步骤及注意事项有哪些?

1、 裂解液要预热,以抑制DNase,加速蛋白变性,促进DNA溶解。

2、 酚一定要碱平衡。苯酚具有高度腐蚀性,飞溅到皮肤、粘膜和眼睛会造成损伤,因此应注意防护。氯仿易燃、易爆、易挥发,具有神经毒作用,操作时应注意防护。

3、 各操作步骤要轻柔,尽量减少DNA的人为降解。

4、 取各上清时,不应贪多,以防非核酸类成分干扰。

5、 异丙醇,乙醇.NaAc,KAc等要预冷,以减少DNA的降解,促进DNA与蛋白等的分相及DNA沉淀。

6、 提取DNA过程中所用到的试剂和器材要通过高压烤干等办法进行无核酸酶化处理。

7、 所有试剂均用高压灭菌双蒸水配制。

加速溶剂萃取是通过什么途径使溶剂萃取速度加快的

是指夹带剂占加料量的质量分数。往往夹带剂和萃取剂不是一种状态的物质,所以一般不用物质的量之比、体积比等表示夹带剂多少,而采用比较方便的质量分数表示。下面是有关超临界流体萃取及夹带剂的一些介绍和一篇论文,仅供参考。超临界流体萃取(SuperiticalFluidExtraction,以下简称SFE)是一项发展很快、应用很广的实用性新技术。传统的提取物质中有效成份的方法,如水蒸汽蒸馏法、减压蒸馏法、溶剂萃取法等,其工艺复杂、产品纯度不高,而且易残留有害物质。超临界流体萃取是利用流体在超临界状态时具有密度大、粘度小、扩散系数大等优良的传质特性而成功开发的。它具有提取率高、产品纯度好、流程简单、能耗低等优点。什么是超临界:任何一种物质都存在三种相态----气相、液相、固相。三相呈平衡态共存的点叫三相点。液、气两相呈平衡状态的点叫临界点。在临界点时的温度和压力称为临界温度和临界压力。不同的物质其临界点所要求的压力和温度各不相同。超临界流体(SCF)是指在临界温度(Tc)和临界压力(Pv)以上的流体。高于临界温度和临界压力而接近临界点的状态称为超临界状态。超临界萃取的原理:超临界流体萃取分离过程的原理是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,超临界流体具有很好的流动性和渗透性,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以在超临界流体萃取过程是由萃取和分离组合而成的。超临界流体(SCF)的选取:溶质在某溶剂中的溶解度与溶剂的密度呈正相关,SCF也与此类似。因此,通过改变压力和温度,改变SCF的密度,便能溶解许多不同类型的物质,达到选择性地提取各种类型化合物的目的。可作为SCF的物质很多,如二氧化碳、一氧化亚氮、六氟化硫、乙烷、甲醇、氨和水等。其中二氧化碳因其临界温度低(Tc=31.3℃),接近室温;临界压力小(Pv=7.15MPa),扩散系数为液体的100倍,因而具有惊人的溶解能力。且无色、无味、无毒、不易燃、化学惰性、低膨胀性、价廉、易制得高纯气体等特点,现在应用最为广泛。?二氧化碳超临界萃取的溶解作用:在超临界状态下,CO2对不同溶质的溶解能力差别很大,这与溶质的极性、沸点和分子量密切相关,一般来说有以下规律:亲脂性、低沸点成分可在104KPa以下萃取,如挥发油、烃、酯、内酯、醚、环氧化合物等,像天然植物和果实中的香气成分,如桉树脑、麝香草酚、酒花中的低沸点酯类等;化合物的极性基团(如-OH、-COOH等)愈多,则愈难萃取。强极性物质如糖、氨基酸的萃取压力则要在4×104KPa以上;化合物的分子量愈大,愈难萃取。分子量在200~400范围内的组分容易萃取,有些低分子量、易挥发成分甚至可直接用CO2液体提取;高分子量物质(如蛋白质、树胶和蜡等)则很难萃取。超临界CO2萃取的特点:1、可以在接近室温(35-40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散,完整保留生物活性,而且能把高沸点,低挥发渡、易热解的物质在其沸点温度以下萃取出来。%B2、由于全过程不用有机溶剂,因此萃取物绝无残留溶媒,同时也防止了提取过程对人体的毒害和对环境的污染,100%的纯天然,符合当今“绿色环保”、“回归自然”的高品位追求。%B3、控制工艺参数可以分离得到不同的产物,可用来萃取多种产品,而且原料中的重金属、无机物、尘土等都不会被CO2溶解带出。4、蒸馏和萃取合二为一,可以同时完成蒸馏和萃取两个过程,尤其适用于分离难分离的物质,如有机混合物、同系物的分离精制等。5、能耗少;热水、冷水全都是闭路循环,无废水、废渣排放。CO2也是闭路循环,仅在排料时带出少许,不会污染环境。由于能耗少、用人少、物料消耗少,所以运行费用非常低。因此,CO2特别适合天然产物有效成分的提取。对于天然物料的萃取,其产品真正称得上是100%纯天然的“绿色产品”。影响超临界萃取的主要因素: 1.密度:溶剂强度与SCF的密度有关。温度一定时,密度(压力)增加,可使溶剂强度增加,溶质的溶解度增加。2.夹带剂:适用于SFE的大多数溶剂是极性小的溶剂,这有利于选择性的提取,但限制了其对极性较大溶质的应用。因此可在这些SCF中加入少量夹带剂(如乙醇等)以改变溶剂的极性。加一定夹带剂的SFE-CO2可以创造一般溶剂达不到的萃取条件,大幅度提高收率。3.粒度:溶质从样品颗粒中的扩散,可用Fick第二定律加以描述。粒子的大小可影响萃取的收率。一般来说,粒度小有利于SFE-CO2萃取。4.流体体积:提取物的分子结构与所需的SCF的体积有关。增大流体的体积能提高回收率。超临界流体萃取技术研究与应用进展赵东胜,刘桂敏,吴兆亮(河北工业大学化工学院,天津300130)摘要:综述了超临界流体萃取的基本原理,以及提高超临界流体萃取效率的方法,包括加入夹带剂,利用高压电场和超声波等.并对超临界流体萃取技术在生物化工,食品,医药和环保行业的最新应用情况作了介绍.关键词:超临界流体萃取;萃取效率;夹带剂;应用中图分类号:TQ028.8文献标识码:A文章编号:1008-1267(2007)03-0010-03超临界流体萃取技术(SFE)是利用超临界流体作为萃取剂,从液体或固体中萃取了特定成分,以达到分离目的产物的一种新型分离技术.超临界流体萃取具有其它分离方法无可比拟的优点:易于和产物分离,安全无毒,不造成环境污染,操作条件温和不易破坏有效成分等.因此,超临界流体萃取技术在生化,医药,日化,环保,石化及其它领域具有广阔的应用前景.1超临界流体萃取1.1超临界流体超临界流体(SCF)是指超过临界温度(TC)和临界压力(PC)的非凝缩性的高密度流体[1].超临界流体兼有气体和液体两者的特点,密度接近于液体,而粘度和扩散系数却接近于气体,因此不仅具有与液体溶剂相当的溶解能力,而且具有优良的传质性能.超临界流体的溶解能力除了与超临界流体和待分离溶质二者性质相似性有关外,还与操作温度和压力等条件有关.操作温度与超临界流体的临界温度越接近,其溶解能力越强;无论操作压力多高,超临界流体都不能液化,但流体的密度随压力的增大而增大,其溶解能力也随之增强.1.2超临界流体萃取的原理超临界流体萃取技术就是利用上述超临界流体的特殊性质,将其在萃取塔的高压下与待分离的固体或液体混合物接触,调节系统的操作温度和压力,萃取出所需组分;进入分离塔后,通过等压升温,等温降压或吸附等方法,降低超临界流体的密度,使该组分在超临界流体中的溶解度减小而从中分离出来.1.3提高萃取效率的方法提高萃取效率的方法除了适当提高萃取压力,选取合适萃取温度和增大超临界流体流量之外,还可以采用加入适量的夹带剂,利用高压电场和超声波等措施.1.3.1加入夹带剂加入适量合适的夹带剂可明显提高超临界流体对被萃取组分的选择性和溶解度.张昆等[2]对夹带剂甲醇的加入对超临界流体的溶解能力和萃取选择性进行了研究,结果表明甲醇的加入可以显著增加流体的溶解能力,且其增加的程度随甲醇的添加量的增加而增加,这在一定程度上有利于极性物质的提取,但是加入甲醇后会使流体的选择性降低.因此在添加夹带剂时,应选择最优添加量.表面活性剂也可以作为夹带剂提高超临界流体萃取效率,提高的程度与其分子结构有关,分子的脂溶性部分越大,其对超临界流体的萃取效率提高越多[3].关于夹带剂的作用原理,8zlemCü>lü-stündag等[4]研究认为是夹带剂的加入改变了溶剂密度或内部分子间的相互作用所致.在选择萃取剂时应注意以下几点:(1)在萃取阶段,夹带剂与溶质的相互作用是首要的,即夹带剂的加入能使溶质的溶解度较大幅度提高;(2)在溶质再生(分离)阶段,夹带剂应易于与溶质分离;(3)在分离涉及人体健康的产品时,如药品,食品和收稿日期:2006-10-10第21卷第3期2007年5月Vol.21No.3May.2007天津化工TianjinChemicalIndustry化妆品等,还需注意夹带剂的毒性问题.1.3.2利用高压电场高压脉冲电场可显著改善萃取溶质与膜脂等成分的互溶速率及通过细胞壁物质的传质能力,从而提高萃取效率.宁正祥等[5]用高压脉冲电场强化超临界CO2萃取荔枝种仁精油,在300MPa以下时,高压脉冲处理可明显改善超临界萃取效率;尤其是在萃取率低于80%时,高压脉冲电场效果显著.1.3.3利用超声波在超临界流体萃取天然生物资源活性有效成分的过程中,采用强化措施减少萃取的外扩散阻力往往能取得很好的萃取效果.陈钧等[6]研制了带有超声换能器的萃取器,利用超声强化超临界萃取中的传质过程.方瑞斌等[7]用超声波强化超临界CO2萃取紫杉醇.研究表明,如要完全萃取紫杉醇,未强化超声超临界CO2的萃取时间是强化超声超临界CO2的3倍.在对1.1%紫杉醇浸膏的萃取实验中,强化超声的超临界CO2很快达到100%萃取,而未强化超声的超临界萃取在3倍时间及用量相同条件下只达到41%的萃取率,这充分显示了超临界萃取与超声技术并用的优越性.Ai-junHu等[8]对超声强化超临界流体萃取薏苡种子中的薏苡油和薏苡仁酯的研究也表明,超声强化技术可以很大程度地提高萃取效率.此外,还有一些强化措施包括搅拌,增加流量或采用移动床等,这些措施都是为了达到减少萃取中外扩散阻力的目的.2超临界流体萃取技术在工业上的应用2.1在生物化工中的应用由超临界流体的特性可知,它特别适合用于热敏性生物物质的分离和提取.目前超临界流体萃取技术已应用于提取和精制混合油脂,如用EPA(二十碳五烯酸)和DHA(二十二碳六烯酸)总含量为60%的鱼油为原料,可得到纯度高达90%的EPA和DHA[9].MarionLétisse等[10]对超临界流体萃取法富集沙丁鱼中EPA和DHA的操作条件进行了优化.袁成凌等[11]对超临界流体萃取微生物发酵法生产的真菌油脂进行了研究,结果表明采用超临界CO2富集微生物菌丝体中多不饱和脂肪酸的方法在工艺上是可行的,但富集效果还有待进一步提高.N.Vedaraman等[12]对超临界流体萃取牛脑中的胆固醇进行了研究.2.2在食品工业中的应用超临界流体萃取技术在食品工业的应用已有相当长的历史.用超临界流体萃取技术脱除咖啡豆和茶叶中的咖啡因早已实现工业化生产.德国SKW公司生产脱咖啡因茶,采用超临界流体萃取技术生产能力达6000t/a.此外,SKW公司还将超临界流体萃取技术应用于啤酒的生产,该公司超临界流体萃取加工酒花的设备的生产能力为104t/a[13].SeiedMahdiPourmortazavi等[14]研究了利用超临界流体萃取植物中的精油,结果表明,与蒸馏法相比此法具有明显优势:萃取时间短,成本低,产品更纯净.P.Ambrosino等[15]对超临界流体萃取玉米中白僵菌毒素进行了研究.将超临界流体技术应用于食品领域,可使食品的外观,风味和口感更好,因此超临界流体萃取技术在食品工业具有广阔的应用前景.2.3在医药行业中的应用超临界流体萃取在医药行业的应用是非常广泛的,尤其值得一提的是在中药有效成分的提取方面,我国做了大量工作.目前,超临界流体萃取中药有效成分已实现工业化生产,浙江康莱特公司将其用于萃取抗癌中药,云南森菊公司拥有两套1000L的萃取除虫菊成分的超临界流体萃取装置[16].杜玉枝等[17]研究表明,CO2超临界萃取比石油醚抽提优越,具有收率高,提取时间短及无溶剂残留等优点,适合于藏成药安神丸的制备.Benliu等[18]研究了利用超临界流体萃取黄连根中的黄连成分.很多学者对超临界流体萃取中药有效成分进行了研究,如川芎,白芷,当归和黄连等.2.4在环境保护中的应用超临界流体萃取技术在环境保护领域尤其是处理被污染的固体物料和水体等方面具有广阔的应用前景.于恩平[19]利用超临界流体萃取方法处理多氯联苯污染物的研究表明,用超临界流体萃取技术可以清除固体物料中的有机毒性物质.高连存等[20]对炼钢厂炼焦车间土壤进行了SFE研究,比较了温度和压力对超临界流体萃取PAH(苯丙胺酸羟化酵素)类化合物的影响,并且用GC-MS(气-质联用法)分析结果和索式提取法做了对比,结果其回收率远远第21卷第3期赵东胜等:超临界流体萃取技术研究与应用进展11高于索式提取法的回收率.游静等[21]研究了用固相吸附与超临界流体萃取相结合富集水中有机污染物的方法,表明超临界流体萃取对水中极性较大的有机化合物的处理是可行的.V.Librando等[22]对超临界流体萃取海洋沉积物和土壤样本中的多环芳烃污染物进行了研究,多环芳烃回收率达到90%以上.Kong-HwaChiu等[23]也将超临界流体萃取技术应用于治理环境中的有机污染物.除了上面提到的几个方面的应用,超临界流体萃取技术还在日化,陶瓷和仪器分析等领域有着重要的应用.3展望超临界流体与气体和液体相比,可以说兼具后两者的优点而又克服了它们的不足,而且超临界流体萃取操作条件温和,所以超临界流体萃取技术相比其它分离方法优势非常明显.目前,超临界流体萃取技术在各领域应用过程中还有很多问题有待解决,相信通过国内外专家的共同努力,该技术在各领域的应用必将深入,而且会不断拓宽,其在工业生产上的作用也将随之日益凸显

TAG: 溶剂 原理