地球测地线展开后是正弦波形状吗?

1316℃ JORDAN

地球测地线展开后是正弦波形状吗?

测地线(求详情)

测地线又称大地线或短程线,可以定义为空间中两点的局域最短或最长路径。测地线(Geodesic)的名字来自于对于地球尺寸与形状的大地测量学(Geodesy)。  类似地球这样的物体并非由于称为引力的力使之沿着弯曲轨道运动,而是它沿着弯曲空间中最接近于直线的称之为测地线的轨迹运动。例如,地球的表面是一弯曲的二维空间。地球上的测地线称为大圆,是两点之间最近的路径。由于测地线是两个机场之间的最短程,这正是领航员叫飞行员飞行的航线。在广义相对论中,物体总是沿着四维时空的直线走。尽管如此,在我们的三维空间看起来它是沿着弯曲的途径(这正如同看一架在非常多山的地面上空飞行的飞机。虽然它沿着三维空间的直线飞,在二维的地面上它的影子却是沿着一条弯曲的路径)。    如果两曲面沿一曲线相切,并且此曲线是其中一个曲面的测地线,那么它也是另一个曲面 的测地线。 过曲面上任一点,给定一个曲面的切方向,则存在唯一一条测地线切于此方向。 在适当的小范围内联结任意两点的测地线是最短线,所以测地线又称为短程线。  光线经过一个大质量天体附近时,受其引力作用(或者说进入了该天体附近的弯曲空间), 路线会发生偏转,称为“测地线效应”。  距离最短的曲线在相对论中的专业术语是测地线,事实上,相应于速度小于C,等于C,大于C的三种测地线分别称为类时测地线,类光测地线和类空测地线。所以,如果不受到引力以外其他力的作用,物体将在类时或类光测地线上运动(因为没有物体的速度能超过光速)  例如,地球这样的物体并非收到称作引力的力的作用而沿着弯曲轨道运动;相反,他们之所以沿着弯曲轨道运动,是因为在弯曲空间中,他们遵循着一条最接近直线的路径运动,这个路径称作测地线。用专业术语来书,测地线的定义就是相邻两点之间最短(或最长) 的路径。编辑本段测地线效应概述  称作测地线进动(Geodetic Effect或Geodetic Precession)是指在广义相对论预言下引力场的时空曲率对处于其中的具有自旋角动量的测试质量的运动状态所产生的影响,这种影响造成了测试质量的自旋角动量在引力场内沿测地线的进动。这种效应在今天成为了广义相对论的一种实验验证方法,并且已经由美国国家航空航天局于2004年发射的科学探测卫星“引力探测器B”在观测中证实。  

测地线效应示意图

解释  由于广义相对论本身是一种几何理论,所有的引力效应都可以用时空曲率来解释,测地线效应也不例外。不过,这里自旋角动量的进动也可以部分地从广义相对论的替代理论之一——引力磁性来理解。从引力磁性的观点来看,测地线效应首先来源于轨道-自旋耦合作用。在引力探测器B的观测中,这是引力探测器B中的陀螺仪的自旋和位于轨道中心的地球的质量流的相互作用。本质上这完全可以和电磁理论中的托马斯进动做类比。这种相互作用所导致的进动在全部的测地线进动中起到三分之一的贡献。  另外的三分之二贡献不能用引力磁性来解释,只能认为来自于时空曲率。简单来说,平直时空中沿轨道运动的自旋角动量方向会随着引力场造成的时空弯曲而倾斜。这一点其实并不难于理解:垂直于一个平面的矢量在平面发生弯曲后定然会改变方向。根据推算,引力探测器B的绕地轨道周长由于地球引力场的影响会比不考虑引力场时的周长缩短1.1英寸(约合2.8厘米),这个例子在引力探测器B的研究中经常被称作“丢失的一英寸”。在引力探测器B的位于642千米高空的极轨道上,广义相对论的理论预言由于自旋-轨道耦合和时空曲率而产生的轨道平面上的测地线效应总和为每年进动6.606角秒(约合0.0018度)。这对于弱引力场中相对论效应来说已经是一个相当显著的影响了(作为同为引力探测器B的观测任务之一的地球引力场的参考系拖拽要比测地线效应弱170倍)。引力探测器B的观测结果首先在2007年4月举行的美国物理学会四月年会上进行了快报,其观测结果与理论误差小于1%。

谁解决了"最短测地线"问题

举例说,在地球上两点之间的距离多大,你可以设想,用一根软绳紧贴着地面,从一点到另一点,如果这根绳子与地球的一个大圆重合,则绳子长度或者是最短的(劣弧),或者是最长的(优弧),这样确定的这段圆弧,就是地球这两点的测地线。

测地线是什么 怎么求测地线

测地线的概念http://www.thshx/xueshengpindao/shuxueshihua/shuxuequwei/200505/340.html

计算测地线

http://www.cad.zju.edu/chinagraph/chinese/specialtopic/graphics/Graphics_paper_XiaoChunxia_Chinagraph04.pdf

地球仪展开是什么样子的?

过于专业化了,地图投影本身就没学好,制图专业的对此应该很熟悉。

我只了解一点:

地球或者地球仪是个球体,具有一定的拱面,无论如何无法展开成一个平面。只有用投影的方式才能变成平面,但是投影一定要产生变形,采用不同的投影方式,变形是不一样的。

因此才会有各种各样的地图存在。