如何用向量运算证明若a与b不共线,λa+μb=0,则λ=μ=0? 如何判断向量共线

4975℃ LIONEL

如何用向量运算证明若a与b不共线,λa+μb=0,则λ=μ=0?如何判断向量共线

对任意两个向量a,b,若存在不全为0的实数对(λ,u),使λa+ub=0,则a与b共线。怎么证?

∵λa+ub=0(向量)

∴λa=-ub

∵λ,u不全为0

不妨设λ≠0

那么a=-u/λ*b

∴a,b共线

向量计算公式

向量的加法满足平行四边形法则和三角形法则.

向量的加法OB+OA=OC.

a+b=(x+x',y+y').

a+0=0+a=a.

向量加法的运算律:

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c).

2、向量的减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0

向量的减法

AB-AC=CB.即“共同起点,指向被

向量的减法减”

a=(x,y)b=(x',y') 则a-b=(x-x',y-y').

3、数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣.

当λ>0时,λa与a同方向;

向量的数乘

当λ<0时,λa与a反方向;

向量的数乘当λ=0时,λa=0,方向任意.

当a=0时,对于任意实数λ,都有λa=0.

注:按定义知,如果λa=0,那么λ=0或a=0.

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或××反方向(λ<0)上缩短为原来的∣λ∣倍.

数与向量的乘法满足下面的运算律

结合律:(λa)·b=λ(a·b)=(a·λb).

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ.

4、向量的数量积

定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π

定义:两个向量的数量积(内积、点积)是一个数量,记作a·b.若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣.

向量的数量积的坐标表示:a·b=x·x'+y·y'.向量的数量积的运算律

a·b=b·a(交换律);

(λa)·b=λ(a·b)(关于数乘法的结合律);

(a+b)·c=a·c+b·c(分配律);

向量的数量积的性质

a·a=|a|的平方.

a⊥b 〈=〉a·b=0.

|a·b|≤|a|·|b|.(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)

向量的数量积与实数运算的主要不同点

1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2.

2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c.

3、|a·b|≠|a|·|b|

4、由 |a|=|b| ,推不出 a=b或a=-b.

5、向量的向量积

定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”).若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.

向量的向量积性质:

∣a×b∣是以a和b为边的平行四边形面积.

a×a=0.

a垂直b〈=〉a×b=|a||b|.

向量的向量积运算律

a×b=-b×a;

(λa)×b=λ(a×b)=a×(λb);

a×(b+c)=a×b+a×c.

注:向量没有除法,“向量AB/向量CD”是没有意义的.

共线向量定理的证明(多种方法)

如果 a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得 b=λa。

证明:

1)充分性,对于向量 a(a≠0)、b,如果有一个实数λ,使 b=λa,那么由 实数与向量的积的定义 知,向量a与b共线。

2)必要性,已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即 ∣b∣=m∣a∣。那么当向量a与b同方向时,令 λ=m,有 b =λa,当向量a与b反方向时,令 λ=-m,有 b=-λa。如果b=0,那么λ=0。

3)唯一性,如果 b=λa=μa,那么 (λ-μ)a=0。但因a≠0,所以 λ=μ。

证毕。

[编辑本段]推论

推论1

两个向量a、b共线的充要条件是:存在不全为零的实数λ、μ,使得 λa+μb=0。

证明:

1)充分性,不妨设μ≠0,则由 λa+μb=0 得 b=(λ/μ)a。由 共线向量基本定理 知,向量a与b共线。

2)必要性,已知向量a与b共线,若a≠0,则由共线向量基本定理知,b=λa,所以 λa-b=0,取 μ=-1≠0,故有 λa+μb=0,实数λ、μ不全为零。若a=0,则取μ=0,取λ为任意一个不为零的实数,即有 λa+μb=0。

证毕。

推论2

两个非零向量a、b共线的充要条件是:存在全不为零的实数λ、μ,使得 λa+μb=0。

证明:

1)充分性,∵μ≠0,∴由 λa+μb=0 可得 b=(λ/μ)a。由 共线向量基本定理 知,向量a与b共线。

2)必要性,∵向量a与b共线,且a≠0,则由 共线向量基本定理 知,b=λa;又∵b≠0,∴λ≠0; 取 μ=-1≠0,就有 λa+μb=0,实数λ、μ全不为零。

证毕。

推论3

如果a、b是两个不共线的向量,且存在一对实数λ、μ,使得 λa+μb=0,那么λ=μ=0。

证明:(反证法)

不妨假设μ≠0,则由 推论1 知,向量a、b共线;这与已知向量a、b不共线矛盾,故假设是错的,所以λ=μ=0。

证毕。

推论4

如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在唯一实数λ,使得

向量PC=(1-λ)向量PA+λ向量PB。(其中,向量AC=λ向量AB)。

证明:

∵三点P、A、B不共线,∴向量AB≠0,

由 共线向量基本定理 得,

点C在直线AB上 <=> 向量AC 与 向量AB 共线 <=> 存在唯一实数λ,使 向量AC=λ·向量AB

∵三点P、A、B不共线,∴向量PA 与 向量PB 不共线,

∴向量AC=λ·向量AB <=> 向量PC-向量PA=λ·(向量PB-向量PA) <=> 向量PC=(1-λ)向量PA+λ·向量PB。

证毕。

推论5

如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在唯一一对实数λ、μ,使得

向量PC=λ向量PA+μ向量PB。(其中,λ+μ=1)

证明:

在推论4 中,令 1-λ=μ ,则λ+μ=1,知:

三点P、A、B不共线 <=> 点C在直线AB上的充要条件是:存在实数λ、μ,使得向量PC=λ向量PA+μ向量PB。(其中,λ+μ=1)

下面证唯一性,若 向量PC=m向量PA+n向量PB,则 m向量PA+n向量PB=λ向量PA+μ向量PB,

即,(m-λ)向量PA+(n-μ)向量PB=0,

∵三点P、A、B不共线,∴向量PA 与 向量PB 不共线,

由 推论3 知,m=λ,n=μ。

证毕。

推论6

如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在不全为零的实数λ、μ、ν,使得

λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0。

证明:

1)充分性,由推论5 知,若三点P、A、B不共线,则 点C在直线AB上 <=> 存在实数λ、μ,使得 向量PC=λ向量PA+μ向量PB(其中,λ+μ=1)。

取ν=-1,则有:λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0,且实数λ、μ、ν不全为零。

2)必要性,不妨设ν≠0,且有:λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0,则 向量PC=(λ/ν)·向量PA+(μ/ν)·向量PB,(-λ/ν)+(-μ/ν)=1。由推论5 即知,点C在直线AB上。

证毕。

推论7

点P是直线AB外任意一点,那么三不同点A、B、C共线的充要条件是:存在全不为零的实数λ、μ、ν,使得

λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0。

证明:(反证法)

∵点P是直线AB外任意一点,∴向量PA≠0,向量PB≠0,向量PC≠0,且 向量PA、向量PB、向量PC两两不共线。

由推论6 知,实数λ、μ、ν不全为零,

1)假设实数λ、μ、ν中有两个为零,不妨设λ≠0,μ=0,ν=0。则 λ向量PA=0,∴向量PA=0。这与向量PA≠0。

2)假设实数λ、μ、ν中有一个为零,不妨设λ≠0,μ≠0,ν=0。则 λ向量PA+μ向量PB=0,∴向量PA=(μ/λ)·向量PB,∴向量PA 与 向量PB共线,这与向量PA 与 向量PB不共线矛盾。

证毕。

[编辑本段]共线向量定理

定理1

⊿ABC中,点D在直线BC上的充要条件是

其中

都是其对应向量的数量。

证明:有推论5 即可证得。

定理2

⊿ABC中,点D在直线BC上的充要条件是

其中

都是有向面积。通常约定,顶点按逆时针方向排列的三角形面积为正,顶点按顺时针方向排列的三角形面积为负。

证明:由定理1 即可得证。

如何证明两向量共线?

共线向量基本定理为如果 a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得 b=λa。

证明:

1、充分性:对于向量 a(a≠0)、b,如果有一个实数λ,使 b=λa,那么由实数与向量的积的定义 知,向量a与b共线。

2、必要性:已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即 ∣b∣=m∣a∣。那么当向量a与b同方向时,令 λ=m,有 b =λa,当向量a与b反方向时,令 λ=-m,有 b=λa。如果b=0,那么λ=0。

3、唯一性:如果 b=λa=μa,那么 (λ-μ)a=0。但因a≠0,所以 λ=μ。

扩展资料:

向量的记法:

印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 [1]  如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。

几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。

不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。

参考资料来源:搜狗百科——共线向量基本定理

TAG: 向量