数学中的虚数应该如何在几何中理解?可以将其理解成平面向量吗? 复线性空间几何意义

440℃ TRACI

数学中的虚数应该如何在几何中理解?可以将其理解成平面向量吗?复线性空间几何意义

求教虚数该怎么理解....?

z=a+bi

则z对应于点(a,b)

实部a相当于点的横坐标x,虚部b相当于点的纵坐标y

即每一个虚数都对应于平面上的一个点,是一一对应的关系

讲解一下有关虚数的知识

1、知识结构

本节首先介绍了复数的有关概念,然后指出复数相等的充要条件,

接着介绍了有关复数的几何表示,最后指出了有关共轭复数的概念.

2、重点、难点分析

(1)正确复数的实部与虚部

对于复数 ,实部是 ,虚部是 .注意在说复数 时,一定有 ,否则,

不能说实部是 ,虚部是 ,复数的实部和虚部都是实数。

说明:对于复数的定义,特别要抓住 这一标准形式以及 是实数这一概念,

这对于解有关复数的问题将有很大的帮助。

(2)正确地对复数进行分类,弄清数集之间的关系

分类要求不重复、不遗漏,同一级分类标准要统一。根据上述原则,

复数集的分类如下:

注意分清复数分类中的界限:

①设 ,则 为实数

② 为虚数

③ 且 。

④ 为纯虚数 且

(3)不能乱用复数相等的条件解题.用复数相等的条件要注意:

①化为复数的标准形式

②实部、虚部中的字母为实数,即

(4)在讲复数集与复平面内所有点所成的集合一一对应时,要注意:

①任何一个复数 都可以由一个有序实数对( )唯一确定.这就是说,

复数的实质是有序实数对.一些书上就是把实数对( )叫做复数的.

②复数 用复平面内的点Z( )表示.复平面内的点Z的坐标是( ),而不是( ),

也就是说,复平面内的纵坐标轴上的单位长度是1,而不是 .由于 =0+1· ,

所以用复平面内的点(0,1)表示 时,这点与原点的距离是1,

等于纵轴上的单位长度.这就是说,

当我们把纵轴上的点(0,1)标上虚数 时,不能以为这一点到原点的

距离就是虚数单位 ,或者 就是纵轴的单位长度.

③当 时,对任何 , 是纯虚数,所以纵轴上的点( )( )都是表示纯虚数.但当 时,

是实数.所以,纵轴去掉原点后称为虚轴.

由此可见,复平面(也叫高斯平面)与一般的坐标平面(也叫笛卡儿平面)

的区别就是复平面的虚轴不包括原点,而一般坐标平面的原点是横、

纵坐标轴的公共点.

④复数z=a+bi中的z,书写时小写,复平面内点Z(a,b)中的Z,

书写时大写.要学生注意.

(5)关于共轭复数的概念

设 ,则 ,即 与 的实部相等,虚部互为相反数

(不能认为 与 或 是共轭复数).

教师可以提一下当 时的特殊情况,即实轴上的点关于实轴本身对称,

例如:5和-5也是互为共轭复数.当 时, 与 互为共轭虚数.可见,

共轭虚数是共轭复数的特殊情行.

(6)复数能否比较大小

教材最后指出:“两个复数,如果不全是实数,就不能比较它们的大小”,

要注意:

①根据两个复数相等地定义,可知在 两式中,只要有一个不成立,

那么 .两个复数,如果不全是实数,只有相等与不等关系,

而不能比较它们的大小.

②命题中的“不能比较它们的大小”的确切含义是指:

“不论怎样定义两个复数间的一个关系‘<’,

都不能使这关系同时满足实数集中大小关系地四条性质”:

(i)对于任意两个实数a, b来说,a<b, a=b, b<a

这三种情形有且仅有一种成立;

(ii)如果a<b,b<c,那么a<c;

(iii)如果a<b,那么a+c<b+c;

(iv)如果a<b,c>0,那么ac<bc.(不必向学生讲解)

(二)教法建议

1.要注意知识的连续性:复数 是二维数,其几何意义是一个点 ,

因而注意与平面解析几何的联系.

2.注意数形结合的数形思想:由于复数集与复平面上的点的

集合建立了一一对应关系,所以用“形”来解决“数”就成为可能,

在本节要注意复数的几何意义的讲解,

培养学生数形结合的数学思想.

3.注意分层次的教学:教材中最后对于“两个复数,

如果不全是实数就不能本节它们的大小”没有证明,

如果有学生提出来了,在课堂上不要给全体学生证明,

可以在课下给学有余力的学生进行解答.

复数的有关概念

教学目标

1.了解复数的实部,虚部;

2.掌握复

很高兴回答楼主的问题 如有错误请见谅

虚数应该怎么理解 我帮我小弟问的

虚数就是其平方是负数的数。

为什么复数的几何意义是向量?有方向?

“复数”、“虚数”这两个名词,都是人们在解方程时引入的。为了用公式求一元二次、三次方程的根,就会遇到求负数的平方根的问题。1545年,意大利数学家卡丹诺(GirolamoCardano,1501年~1576年)在《大术》一书中,首先研究了虚数,并进行了一些计算。1572年,意大利数学家邦别利(RafaclBombclli,1525年~1650年)正式使用“实数”“虚数”这两个名词。此后,德国数学家莱布尼兹(GottfriedWilbclmLcibniz,1646年~1716年)、瑞士数学家欧拉(LeonhardEuler,1707年~1783年)和法国数学家棣莫佛(AbrabamdeMoivre,1667年~1754年)等又研究了虚数与对数函数、三角函数等之间的关系,除解方程以外,还把它用于微积分等方面,得出很多有价值的结果,使某些比较复杂的数学问题变得简单而易于处理。大约在1777年,欧拉第一次用i来表示-1的平方根,1832年,德国数学家高斯(CarlFricdrichGauss,1777年~1855年)第一次引入复数概念,一个复数可以用a+bi来表示,其中a,b是实数,i代表虚数 单位,这样就把虚数与实数统一起来了。高斯还把复数与复平面内的点一一对应起来,给出了复数的一种几何解释。不久,人们又将复数与平面向量联系起来,并使其在电工学、流体力学、振动理论、机翼理论中得到广泛的实际应用,然后,又建立了以复数为变数的“复变函数”的理论,这是一个崭新而强有力的数学分支,所以我们应该深刻认识到了“虚数不虚”的道理。

16世纪意大利米兰学者卡当(Jerome Cardan1501—1576)在1545年发表的《重要的艺术》一书中,公布了三次方程的一般解法,被后人称之为“卡当公式”。他是第一个把负数的平方根写到公式中的数学家,并且在讨论是否可能把10分成两部分,使它们的乘积等于40时,他把答案写成=40,尽管他认为和这两个表示式是没有意义的、想象的、虚无飘渺的,但他还是把10分成了两部分,并使它们的乘积等于40。给出“虚数”这一名称的是法国数学家笛卡尔(1596—1650),他在《几何学》(1637年发表)中使“虚的数”与“实的数”相对应,从此,虚数才流传开来。

数系中发现一颗新星——虚数,于是引起了数学界的一片困惑,很多大数学家都不承认虚数。德国数学家莱布尼茨(1646—1716)在1702年说:“虚数是神灵遁迹的精微而奇异的隐避所,它大概是存在和虚妄两界中的两栖物”。瑞士数学大师欧拉(1707—1783)说;“一切形如,习的数学武子都是不可能有的,想象的数,因为它们所表示的是负数的平方根。对于这类数,我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么,它们纯属虚幻。”然而,真理性的东西一定可以经得住时间和空间的考验,最终占有自己的一席之地。法国数学家达朗贝尔(1717—1783)在1747年指出,如果按照多项式的四则运算规则对虚数进行运算,那么它的结果总是的形式(a、b都是实数)(说明:现行教科书中没有使用记号=-i,而使用=一1)。法国数学家棣莫佛(1667—1754)在1730年发现公式了,这就是著名的棣莫佛定理。欧拉在1748年发现了有名的关系式,并且是他在《微分公式》(1777年)一文中第一次用i来表示一1的平方根,首创了用符号i作为虚数的单位。“虚数”实际上不是想象出来的,而它是确实存在的。挪威的测量学家成塞尔(1745—1818)在1779年试图给于这种虚数以直观的几何解释,并首先发表其作法,然而没有得到学术界的重视。

德国数学家高斯(1777—1855)在1806年公布了虚数的图象表示法,即所有实数能用一条数轴表示,同样,虚数也能用一个平面上的点来表示。在直角坐标系中,横轴上取对应实数a的点A,纵轴上取对应实数b的点B,并过这两点引平行于坐标轴的直线,它们的交点C就表示复数a+bi。象这样,由各点都对应复数的平面叫做“复平面”,后来又称“高斯平面”。高斯在1831年,用实数组(a,b)代表复数a+bi,并建立了复数的某些运算,使得复数的某些运算也象实数一样地“代数化”。他又在1832年第一次提出了“复数”这个名词,还将表示平面上同一点的两种不同方法——直角坐标法和极坐标法加以综合。统一于表示同一复数的代数式和三角式两种形式中,并把数轴上的点与实数—一对应,扩展为平面上的点与复数—一对应。高斯不仅把复数看作平面上的点,而且还看作是一种向量,并利用复数与向量之间—一对应的关系,阐述了复数的几何加法与乘法。至此,复数理论才比较完整和系统地建立起来了。

经过许多数学家长期不懈的努力,深刻探讨并发展了复数理论,才使得在数学领域游荡了200年的幽灵——虚数揭去了神秘的面纱,显现出