二阶微分方程的解法 二阶变系数微分方程

1346℃
二阶微分方程解法

这是二阶常系数微分方程,很容易求的,高数书上有设 y=f'(x). 由f'(x)=f"(x), 有 y=dy/dx 移项 dx=dy/y两边积分有 x+d=ln y (d为常数)所以 y=e^(x+d) 即y=f'(x)=ce^x (c为常数)积分f(x)=ce^x+k 再由.f(0)=1,f'(0)=2 解除c=2 k=-1 所以f(x)=2e^x-1

二阶微分方程的解法 二阶变系数微分方程

二阶微分方程怎么解呢解微分方程的几种方法

微分算方法应用于寻求非齐次微分方程特解,相应的齐次微分方程的由特征方程的一般解(第二阶或二阶可转化成)和变量(第一级分离,那么常数的方法来解决比较简单的)求解非齐次方程的常见变异. 2,公式变换:使..将改写微分方程形式,即特定的解决方案. 这样的结果:常系数 微分方程,直接以重写指数D的推导中,常系数不变,就可以了.

二阶微分方程求解

求下列微分方程的通解 1.,特征方程:r²+4r+1=0,特征根:r1=-2-√3,r2=-2+√3, y''+4y'+y=0的通解为y=C1e^(-2-√3)x+C2e^[(-2+√3)x] 2.特征方程:2r²-2r+5=0,特征根:r1=(1-3i)/2],r2=(1+3i)/2, 2y''-2y'+5y=0的通解为y=e^(x/2*{C1cos(3x/2)+C2sin(3x/2)} 3.特征方程:r+25=0,特征根:r1=-25 y'+25y=0的通解为y=Ce^(-25x)

二阶线性微分方程?

所谓的线性微分方程,指的是对函数y而言是线性的,也就是若y1,y2是两个解,则y1+y2也是解,ay1(其中a是任意实数)也是解,因此按照这个定义代入微分方程就会知.

一类二阶常微分方程的几种解法

1、引言常微分方程有着深刻而生动的实际背景,它从生产实践与科学技术中产生,而又称为现代科学技术中分析问题与解决问题的一个强有力的工具.人们对二阶及以上.

二阶线性微分方程的常见解法是什么

方法一:可以先求对应齐次方程的通解,可以求特征值求出其通解.然后再常数变异.方法二:根据二阶线性微分方程的解的结构,可以由待定系数法求出其线性无关的特解,然后写出他们的线性组合即为通解.

二阶微分方程求解的方法选择

把y2(x),y2'(x),y2''(x)代入方程,得y1(x)C'(x)+(2y1'(x)+p(x)y1(x))C'(x)=0.这是个可降阶的二阶微分方程,不显含y.令u=c'(x),则有du/u=-(2y1'+p(x)y1)/y1dx,积分lnu=-2lny1-∫p(x)dx,所以c'(x)=u=1/y1^2*e^(-∫p(x)dx),所以c(x)=∫1/y1^2*e^(-∫p(x)dx) dx.

求二阶微分方程的通解

解:∵y''*e^y'=1 ==>e^y'd(y')=dx ==>e^y'=x+c1 (c1是积分常数) ==>y'=ln│x+c1│ ==>y=∫ln│x+c1│dx ==>y=xln│x+c1│-∫[x/(x+c1)]dx ==>y=xln│x+c1│-∫[1-c1/(x+c1)]dx ==>y=xln│x+c1│-x+c1ln│x+c1│+c2 (c2是积分常数) ==>y=(x+c1)ln│x+c1│-x+c2 ∴原方程的通解是y=(x+c1)ln│x+c1│-x+c2 (c1,c2是积分常数)

二阶常系数微分方程的解法?

对齐次二阶方程x''+ax'+bx=0 有特解x=0 特征方程为p^2+ap+b=0 若a^2-4b>0,特征方程有两不同实根p1,p2 微分方程有通解x=exp{p1*t},x=exp{p2*t} 若a^2-4b=0,特征方程有等根p0 微分方程有通解x=exp{p0*t},x=t*exp{p0*t} 若a^2-4b微分方程有通解 x=exp{ct}*cosdt,x=exp{ct}*sindt 对于非齐次方程x''+ax'+bx=c 通过待定系数法容易求得其解

二阶微分方程求通解

特征方程2r^2+5r=0 r=0,r=-5/2 所以齐次通解为y=C1+C2e^(-5/2) 设特解是y=ax^4+bx^3+cx^2+dx+e y'=4ax^3+3bx^2+2cx+d y''=12ax^2+6bx+2c 代入原方程得2(12ax^2+6bx+2.